
Web Components as a measure for estimating
Effort and Size of Web Applications

 Sworoop Suhanjan Das#1, Kumar Devadutta*2 Santosh Kumar Swain#3, Sanjay Kumar#4

 #School of Computer Engineering, KIIT University
Bhubaneswar, India

 *Innovadors Lab, Bhubaneswar, India

Abstract — Estimating size and effort is a crucial factor in
application development projects and low error margins
are a priority. In line with the very fast evolution of
Internet technologies, all applications are quickly
becoming Web Applications. Thus there is a clear need for
an estimation model for these applications' development
projects. The objective of this paper is to illustrate a new
Web Application cost estimation model that can form the
starting point for any development project. The concept of
Web components can be well implied to calculate the Web
size and effort. In this paper we have taken 10 projects of
a software company and have calculated the effort and
size using Web components.

Keywords—Web components, Internal Logical Files, Web
building blocks, Web Component Model.

I. INTRODUCTION

The Web is used as the delivery platform for two types of
applications: web hypermedia applications and web software
applications [1]. A Web hypermedia application is a non-
conventional application characterized by the authoring of
information using nodes (chunks of information commonly
used for developing such applications are HTML, JavaScript
and multimedia[10]. Estimating the size of web applications
poses new problems for cost analysts. Because hypertext
languages (html, xml, etc.), multi-media files (audio, video,
etc.), scripts (for animation, bindings, etc.) and web building
blocks (active components like ActiveX and applets, building
blocks like buttons and objects like shopping carts, and static
components like DCOM and OLE) are employed in such
applications, it is difficult to use traditional size metrics like
source lines of code and function points [2]. Improved size
estimating techniques are therefore needed to address the

shortfall. Based on the size estimation, the effort required to
complete the project and the duration over which the
development is to be carried out are estimated. Based on the
effort estimation the cost of the project is computed [8]. The
estimated cost forms the basis on which the price negotiations
with the customer are made. Estimating time and cost is a
crucial factor in application development projects and low
error margins are a priority [9]. Recently growth of the web as
a delivery environment has given rise to a new research field-
Web Engineering, the applications of the engineering
principles to develop quality web applications inline with the
very first evolution of internet technologies, all applications
are quickly becoming web applications. Thus there is a clear
need for an estimation model for these applications
development projects.

The rest of the paper is organized as follows. In section II,
we give a survey of related works, and motivation for our
work. The details of the proposed Model are described in
section III. Result of the performance evaluation is given in
section IV. Section V concludes the paper with future work.

II. RELATED WORK

Sizing software systems can be quite a complex task, if
applications developed with new or emerging technologies
must be measured using metrics tailored for different
technologies/ architectures. This is the case of adapting
functional sizing for Object Oriented systems, where Function
point [9], OOFP (Object Oriented Function Points [5]), Object
Points [6], Use Case Points and Class Points [3] constitutes
the most important attempts in defining a measure where an
object decomposition of the system is much more natural than
a functional one.
On the other hand, few examples can be found in literature
about specific size metrics for web applications: Web Points
[7], Internet Points [7], Data Web Points try to address the

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1137

problem of sizing web systems from different point of views.
Unfortunately, they were found to be quite unfit for providing
a reliable metric able to size in an easy and consistent way. So
here an attempt was made where web components are used to
calculate the effort and size of a project.

III. PROPOSED WORK

Web components are used to represent the size of Web
applications. Web components are an extension of function
points that take predictors that web applications are sensitive
to into account as the size of such applications are being
estimate. Web components extend traditional function points
to take the following four additional types of objects into
account because they require additional effort to incorporate
them into web applications:
 Multi-media files – size predictors developed to take the

effort required to incorporate audio, video and images
into applications. Such effort includes the work involved
in creating web pages; creating video for the web
(MPEG-1&2 files); creating publishable documents for
the web; and creating, editing and enhancing complex
images for both clients and servers.

 Web building blocks – size predictors developed to take
the effort required to develop web-enabled fine-grained
component and building block libraries and any wrapper
code required to either instantiate or integrate them. Such
predictors do not count the standard libraries that come as
part of your web environment and typically include both
Windows and Java components. Instead, they take only
the additional active (ActiveX, applets, agents, guards,
etc.), fine-grained static (COM, DCOM, OLE, etc.) and
course-grain reusable (shopping carts, buttons, logos, etc.)
building blocks that you acquire or develop to incorporate
into web applications into account for both your client
and server.

 Scripts – size predictors developed to take the effort
required to link html/xml data and generate reports
automatically; query ODBC-compliant databases via
prompts; integrate and animate applications via
predefined logic (via GIF); and direct dynamic web
content per customizable pallets, masks, windows and
commands (streaming video, real-time 3D, special effects,
motion, guided workflow, batch capture, etc.) for both
clients and servers.

 Links (xml, html and query language lines) – size
predictors developed to take the effort required to link
applications, integrate them together dynamically and
bind them to the database and other applications in a
persistent manner.

The base of the estimate is still function points. Rather than
replace them, they are extended because they still can be used
to accurately estimate the size of Web applications. . To
count web components, we evaluate the following twelve sub-
components of a web system based upon user requirements
and page layouts:
 Internal Logical Files – logical, persistent entities

maintained by the web application to store information of
interest.

 Multi-Media Files – physical, persistent entities used by
the web application to generate output in multi-media
format.

 Web Building Blocks – logical, persistent entities used to
build the web applications and automate their
functionality.

 Scripts– logical, persistent entities used by the web
application to link internal files and building blocks
together in predefined patterns.

 Links – logical, persistent entities maintained by the web
application to find links of interest to external
applications

 External Interface Files – logical, persistent entities that
are referenced by the web application, but are maintained
by another software application.

 External Inputs – logical, elementary business processes
that cross into the application boundary to maintain the
data on an Internal Logical File, access a Multi-Media
File, invoke a Script, access a Link or ensure compliance
with user requirements.

 External Outputs – logical, elementary business
processes that result in data leaving the application
boundary to meet a user requirements (e.g., reports,
screens).

 External Queries – logical, elementary business
processes that consist of a data “trigger” followed by a
retrieval of data that leaves the application boundary (e.g.,
browsing of data).

 Navigation- the total number of pages associated in the
web application and the inter web traversal.

 Graphical files- the number of files present in the web
application which are not multimedia neither animated
files. Example- marquee files.

 Reusability- degree of reuse planned and executed.
.

Based upon the research the proposed metric, Web
Components, computes size by considering each of the many
elements that comprise the Web application. The metric
computes size using Halstead’s equation for volume (that is, a
proposed measure of size that is language independent and
related to the vocabulary used to describe it in terms of
operands and operators) as follows:

 V* = N log2(n) = (N1* + N2*) log2 (n1* + n2*)

where
N = number of total occurrences of operands and operators
n = number of distinct operands and operators
N1* = total occurrences of operand estimator
N2* = total occurrences of operator estimators
n1* = number of unique operands estimator
n2* = number of unique operators estimators
V* = volume of work involved represented as Web Objects

Using the predictors listed in Table1 to compute the number
of Web Components, Web application’s size can be predicted
repeatable and robustly.. Each predictor can be represented by
the unique number of operands and operators that they
contribute to the application. Like function points, the key to
developing repeatable predictor counts is a well-defined set of

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1138

counting conventions. This approach can achieve consistency
across organizations and resolve conflicts, because size

estimates are formulated using such standards.

Table 1: Web components predictor lists

Web components predictors Example operands Example operators
Number of building blocks Fine grained components (ActiveX,DCOM,

OLE, etc.),

Create, apply, call, dispatch, interface,
terminate,widgets

Number of COTS components
(includes any wrapper code)

Commercial packages, library routines,
objects like shopping carts, …

Initiate, terminate, apply, bind, customize,
export, wrap, …

Number of multimedia files Text, video, sound, 3D objects, plug-ins,
metatags (no graphics files), …

Create, cut, paste, clear, edit, animate, broadcast, …

Number of object or application
points (or others proposed)

server data tables, # states, # client data
tables, percent reuse, …

Transform (inputs to outputs), access, generate,

Number of xml, sgml, html and
query language lines

lines including links to data attributes # lines including links to data attributes

Number of Web components Applets, agents, guards, … Create, schedule, dispatch, …
Number of graphics files Templates, pictures, images, … Apply, align, import, export, insert, …
Number of scripts (visual language
audio, motion, and so forth)

Macros, containers, … Create, store, edit, distribute, serialize, generalize, …

Other

Table 2 – Web Component Calculation Worksheet

Web Object Predictors

Low

Average

High

Notes

function, object or
application points

 Internal Logical Files
 External Interface Files
 External Inputs
 External Outputs
 External Inquires

*

7
5
3
4
3

*

10
7
4
5
4

*

15
10
6
7
6

Doesn’t matter so long as one predictor is selected and is
consistently counted in unadjusted form (include query &
hypertext languages)

Unadjusted function points computed using these standard
weightings using IFUG counting conventions

multi-media files 4 5 7 Text, video, audio, etc. (including graphics files, pictures,
images, etc.)

web building blocks 3 4 6 Shopping carts, widgets, components (includes COTS
components), active components (applets, agents, etc.)

scripts (animation, audio,
video, visual, etc.)

2 3 4 Macros, containers, etc.

of links, navigations (xml,
html and query language lines)

3 4 6 Logical line counts, not physical

The predictors weight are given in Table 2 Web component
calculation worksheet [9]. Using the estimating procedure in
Table 3, we compute the number of Web Components. First
the number of operands is counted primarily from the
information in the web page specification. . Once we have
estimated the operands and operators are estimated, they are
adjusted according to the suggestions in Table 2 to determine
their weightings. Then, the number of adjusted number links

and unadjusted number of function points (or alternative) are
added to compute the number of Web Components. In
software science terms, this total number represents the
Length (L) of the program. Like function points, the key to
developing repeatable Volume predictor counts is a well-
defined set of counting conventions. We can achieve
consistency across organizations and resolve conflicts as size
estimates are formulated using such standards.

Based on the language in which the application has to be
developed the size is calculated by considering the LEF
value[11] of the corresponding script and multiplying it with
the Web components
These values are given in International Function Point Users
Group (IFPUG) [11]. Traditional cube-root relationship for

effort in most estimation models does not seem to accurately
predict Web development schedules.

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1139

 Table 3: Estimating procedure

Step Description Example Counting Conventions
1 Count the number of unique

operands for the new
predictors
(use counting conventions in
the Manual to provide
guidelines)

Multi-media fies (audio, video, animation, graphics, etc.)
 Count each graphic files separately independent of its pixel density (JPEG, etc.)
Scripts (macro, distiller, etc.)
 Count each script or use case separately independent of the number of actors involved (i.e.,

we will use the number of actors to determine difficulty rating)
Web building blocks (DCOM, OLE, etc.)
 Count each unique building block in the library separately independent of the resources it

consumes

2 Count the number of unique
operators for the new
predictors
(use counting conventions in
the Manual to provide
guidelines)

Multi-media files (audio, video, animation, graphics, etc.)
 Count each unique operation on the files separately (open, close, save, cut, paste, start,

clear, etc.)
Scripts (macro, distiller, etc.)
 Count each unique scripting operation separately (open, close, start, refresh, search, go

(backwards), go (favorites), go (forward), go (hyperlink), etc.)
Web building blocks (DCOM, OLE, etc.)
 Count each unique operation on the building blocks separately (align, center, distribute,

draw, edit, merge (cells), split (cells), find, add, delete, insert, etc.)

3 Sum the operands and
operators and determine the
weighting in Table (use the
counting conventions in the
Manual to provide
guidelines)

Multi-media files (audio, video, animation, graphics, etc.)
 JPEG – low
 A2b music, Microsoft picture it - average
 PCX Image, XIF: Image, AIFF Audio, Liquid Audio,
 Steaming Audio/Video – high
Scripts (macro, distiller, etc.)
 1 to 3 actors – low
 4 to 6 actors – average
 more than 6 actors – high
Web building blocks (DCOM, OLE, etc.)
 1 to 50 – low
 51 to 250 – average
 more than 250 - high

4 Add the weighted number of
links (xml, html and query
language lines) to the counts

Use logical line counting conventions offered by the Software Engineering Institute to guide the
effort
 html – low
 query lines – average
 xml – high

5 Compute the raw number of
Web Objects (unadjusted for
either language or other
factors)

The new predictors increase the volume of work to handle multi-media files, scripts and web
building block operands and operations as linked together and with the system via xml, html
and query languages

6 Compute the number of
Web Objects

Sum the predictors and add them to the number of unadjusted function points or alternative

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1140

The LEF table is given below:

 Table 4: LEF Table

Language LEF**

1GL default
320

C 128

2GL default
107

COBOL (ANSI85) 91
FORTRAN 107 107
PASCAL 91

3GL default
80

C++ 53
Java for web 32
LISP 64
ORACLE 38
Visual Basic 40
Visual C++ 34

Web default – visual language
35

OO default
29

EIFFEL 20
PERL 22
Smalltalk 20

Web default – OO languages
25

4GL default
20

Crystal Reports 20

Program generator

 Default

16

HTML 15
SQL for web 10

Spreadsheet default
6

Excel 6
Screen Painter 6

5GL default
5

XML 6

MATHCAD 5

 The initial data analysis reveals that the square-root
relationship seems to exist for projects smaller than 100
Web components. For larger projects, the cube-root

relationship seems to produce a better fit. Such a
variable schedule law relationship is expected because
software science scales effort mathematically as a
function of length and volume to predict duration. Now
that these mathematical issues are out of the way, let’s
take a good look at the model that is proposed for
estimating Web development costs. The new model is
called, Web Component Model because it is an
extension of the Cocomo II[4] early design model. Its
mathematical formulation rests upon parameters from
both the Cocomo II and SoftCost-OO software cost-
estimating models [4].
 n
Effort = A (Π (total web components*LEF))p1 cdi
 i=1
Where A=constant.
 p1=power law
 Cdi=cost drivers
 LEF= Language expansion factor
 The cost drivers [10] include

 RCPX: product reliability and complexity
(product attributes);

 PDIF: platform difficulty (volatility of
platform and network servers);

 PERS: personnel capability (skills, knowledge
and abilities of the workforce);

 PREX: personnel experience (the breadth and
depth of the team’s experience);

 FCIL: facilities (tools, equipment and
colocated facilities);

 SCED: schedule (degree of risk taken to
shorten duration);

 TEAM: teamwork (the ability to work
synergistically as a team); and

 PEFF: process efficiency (streamlined for the
business)\

The Web applications can be broadly divided into
four categories as given in Table 5 [11]. Each
category has its value for A and P1. Based on these
categories the effort for corresponding Web projects
can be calculated by putting the appropriate values
for different Web applications.

Table 5: Web development model parameter values

Categories of web applications A P1

 Web-based electronic commerce
2.3

1.05

Financial/trading applications
2.7

1.05

Business-to-business applications
2

1.00

Web-based information utilities
2.1

1.00

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1141

IV. RESULTS

After finding out all the parameters needed to calculate
Effort the model was tested by taking the data of ten
web based application of an Indian software company.
As an example of calculation procedure the following
data were used from one of the Web based electronic
commerce application. It should be noted that these data
were collected from the SRS document prepared by the
company prior to the start of the developmental stage.
Total Web components for rest projects were calculated
in the similar manner and the values are represented in
the following table 6. The values of the web components
are calculated for all the projects and based on that the
effort is calculated it is termed as Effortpred.. To evaluate
the accuracy of the obtained estimations, we used some
summary measures, namely MMRE, and Pred(0.25) ,
which have been widely used in many comparisons to
assess the accuracy of software estimation models . In
the following, we briefly recall the main concepts
underlying the MMRE and Pred(0.25)[9].

The prediction at level 0.25, defined as:

 Pred(0.25) = k /N

 Table 6: Value of Web Components

Projects Web Components
Project 1 301
Project 2 415
Project 3 470
Project 4 376
Project 5 661
Project 6 580
Project 7 428
Project 8 509
Project 9 433
Project 10 396

where k is the number of observations whose MRE is
less than or equal to 0.25. N is the total number of
observations. Pred(0.25) is a quantification of the
percentage of predictions whose error is less than 25%.
A good effort estimation model should have a
MMRE≤0.25 and Pred(0.25)≥0.75, meaning that the
mean estimation error should be less than 25%, and at
least 75% of the estimated values should fall within 25%
of their actual values. Comparing the results of the
Effortpred and Effortactual we calculate the MRE.Mean
Magnitude of Relative Error (MMRE) is given by:
 n
 MMRE = (∑ MRE)/n
 i=1

After finding out the Effortpred for the 10 projects it is
compared with the Effort act which is determined from
the Company’s data set. The MMRE and Pred(0.25) is
calculated and is shown in Table 7.

 Table 7: Results

The 301 web component count in represents overall size
of the program that would be required for this web
application in case of project 1. Now the actual size can
be calculated from the Language Expansion Factors
listed in Table 4.

The method adopted to calculate size is given by

 Size=no of web components *LEF of the script used

 Based on the language in which the application has to
be developed the size is calculated by considering the
LEF value of the corresponding script and multiplying
it with the web objects. This values are given in
International Function Point Users Group (IFPUG)[11].
For example the Project 1 has 301 web objects and the
language used is java. Hence the size is given by:

 Size=301*32=9632 LOC

This count includes the volume of work required to
program Java scripts and beans on both the client and
server assuming that an appropriate Java environment
were available.
Fig 1 shows the results of the Effort pred and Effortact and
it is evident that the graph coincides at number of points
which validates that the result obtained is nearly correct
to the actual effort.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Effort(pred) Effort(act)

Project Number

Ef
fo
rt

Fig1: Graph depicting Effort vs projects

MMRE of Effort Pred(0.25)
0.07398 0.8

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1142

V. CONCLUSION

The proposed model successfully predicted the effort
required to complete different web applications. Web
Components were used as the fundamental units used to
calculate the effort and size. The MMRE was
determined to be .07 and the Pred (0.25) was 80%. The
proposed model can be well implemented in various
web applications. Bigger web application effort can also
be calculated by correct determination of web
components. This can be termed as a more specific
approach for estimating effort and size. In order to
reduce the error rate and increase the prediction rate
more parameters can be found out and the size and effort
can be calculated.

REFERENCE
[1]B. Kitchenham, E. Mendes, and Travassos. Cross versus within-
company cost estimation studies: A systematic review. IEEE
Transaction on Software Engineering, 33(5):316–329, 2007.
[2]. S. Di Martino, F. Ferrucci, C. Gravino, and E. Mendes. Comparing
size measures for predicting web application development effort: A
case study. In Proceedings of Empirical Software Engineering and
Measurement, pages 324– 333. IEEE press, 2007.
[3]. G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class
point: An approach for the size estimation of object-oriented systems,”
IEEE Transactions on Software Engineering, vol. 31, no. 1, pp. 52–74,
Jan. 2005.
[4]. B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, W.
Horowitz, R. Madachy, D. Reifer, and B. Steece, Software Cost
Estimation With COCOMO II. New Jersey: Prentice Hall, 2000.
[5] Mendes, E., and Mosley, N. ,“Investigating Early Web Size
Measures for Web Cost Estimation”, Proc. ACOSM 2000, Sydney,
Australia.
 [6] Mendes, E., and Counsell,S.,”Web Metrics Estimating Design
And Authoring Effort”, Proc. IFPUG 2001 Conference.
 [7] Cowderoy, A.J.C., 2000. “Measures of size and complexity for
web-site content”, Proc. Combined 11th ESCOM Conference and the
3rd SCOPE conference on Software Product Quality, Munich,
Germany, 423--431.
[8] Cleary, D. 2000. “Web-based development and functional size
measurement”. Proc. IFPUG 2000Conference.
[9]L. Baresi and S. Morasca, “Three Empirical Studies on Estimating
the Design Effort of Web Applications”, Transaction on Software
Engineering and Methodology, 16(4), 2007.
[10] G. Costagliola, S. Di Martino, F. Ferrucci, C. Gravino, G. Tortora,
G. Vitiello, “A COSMIC-FFP: Approach to Predict Web Application
Development Effort”, Journal of Web Engineering 5(2), 2006, pp. 93-
120.
 [11] International Function Point Users Group 2004. Function point
counting practices manual, release 4.2.1.

Sworoop Suhanjan Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1137-1143

1143

